
https://mobidev.biz/?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=1pagelogo

https://mobidev.biz/?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=pdf-symphony
mailto:info@mobidev.biz
https://mobidev.biz/?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=1pagelogo

Table of Contents

Technology Choice: Symfony PHP Framework

Principle 1: One codebase can accommodate multiple deployments during

the web development cycle

Principle 2: Explicitly declare and isolate dependencies for the software

Principle 3: Separate configuration files and application codebase

Principle 4: All the variety of services your web app runs, have to stay

detached

Principle 5: Build, release, and run each software development stage

separately

Principle 6: Make processes, stateless, and store the data outside the Web

application

Principle 7: Keep software self-contained and export services via port binding

Principle 8: Apply the process model with NO sharing

Principle 9: Stay sustainable with fast launching and shutting down processes

Principle 10: Keep development, staging, and production stages as similar as

possible

Principle 11: Good practice collecting application logsis is to perceive them as

event streams

Principle 12: Manage admin activities as one-off processes

Achieve web application stability and scalability

SaaS Web Application Development Principles to Be Followed 0

If you’re reading this article, it probably means that you aren’t satisfied with

the progress of your web development project. More often than not, it

means something went wrong during the development cycle.

It could have been a problem with delivery, scalability, or cost estimation.

Regardless, whether it’s a new build or an implementation of new features, it

can quickly become overwhelming.

So what’s a product owner to do?

Those product owners I was consulting with, react in different ways. But

most often, they tend to put all other business activities on hold to dive deep

into managing the development process.

The process of developing sophisticated web-based software is more like a

marathon than a sprint. But we have to keep moving forward. To avoid

potential problems, follow the best practices introduced in this guide. The

following recommendations are based on The Twelve-Factor App

methodology and our expertise.

The web application development best practices discussed here can be

applied to any Software-as-a-Service (SaaS) model. It covers everything from

back-end development on a local machine to cloud architecture.

They are also based on the contributions of a broader community of

software engineers who boast significant expertise in enterprise web

development.

SaaS Web Application Development Principles to Be Followed 1

https://en.wikipedia.org/wiki/Twelve-Factor_App_methodology
https://mobidev.biz/blog/3_types_of_web_application_architecture?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=types-app
https://mobidev.biz/get-pdf/attributebasedcontrolpdf?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=attributebased

Technology Choice: Symfony PHP Framework

This journey into web application development best practices can be used as

a guide to designing back-end architecture, and more. You can also do this

by using any programming language you like.

However, for this post, we will focus on examples that leverage the Symfony

PHP framework. It makes perfect sense as this framework is often used to

build mid-sized cloud-based SaaS products.

According to the Roadmap, Symfony has continued to evolve since it was first

released in 2005. Today, the framework follows PHP Standards

Recommendations and boasts SOLID design principles for web development.

So software engineers will be able to follow these best practices, seamlessly.

Principle 1: One codebase can accommodate multiple

deployments during the web development cycle

If you’re designing a web application and not a distributed software, I

strongly recommend sticking to a single codebase. The best way to go about

it is to store your code in a Git repository (or any other version controlled

solution).

Web application development cycle for the new features will look (more

or less) like this:

● Software engineers work with the same codebase on their local

computers.

● After each feature is developed, they'll push the code to a Git repository.

● The updated codebase is then deployed and tested on a staging server by

the Quality Assurance team.

● The same code is then deployed to production, but only after it's tested

on a staging level to ensure that it works as intended.

SaaS Web Application Development Principles to Be Followed 2

https://symfony.com/
https://symfony.com/
https://symfony.com/roadmap
https://www.php-fig.org/psr/
https://www.php-fig.org/psr/
https://en.wikipedia.org/wiki/SOLID

Principle 2: Explicitly declare and isolate dependencies for the

software

The golden rule is to first make a list of all external libraries and services that

have been used. These should be separate from the code and quickly

switched on/off or changed as needed. This enables you to do more with

minimum influence on the overall code.

To manage libraries, for example, use a Composer. It's a great way to add

and manage libraries demanded by your web application.

The Composer will create a file called composer.lock. Here, you'll find the

same (exact) version of each package downloaded. These are the same

packages that ran during the composer installation.

Store composer.lock in your Git repository and exclude the vendor folder

from Git. This approach will ensure that each deployment (for another

developer, for staging, or production servers) will get the same versions of

libraries after the run “composer install” command.

If you fail to do this, you may end up with different package versions on

production that will result in unstable app behavior.

Check our Case study about moving a Web product from monolith to

microservices architecture and reducing dependencies to a minimum.

SaaS Web Application Development Principles to Be Followed 3

https://getcomposer.org/
https://mobidev.biz/blog/case-study-growthhackers?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=growthhackers
https://mobidev.biz/blog/case-study-growthhackers?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=growthhackers
https://mobidev.biz/blog/case-study-growthhackers?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=growthhackers

Principle 3: Separate configuration files and application

codebase

According to the Twelve-Factor App principles, “an app’s configuration is

everything likely to vary between deploys.”

Often, software configuration settings can be changed between

development, staging, and production environments. However, according to

the application development principals, storing them in the codebase as

configs or constants is prohibited.

The following are examples of settings that shouldn’t be stored within

the code:

● Database and cache server connection settings

● Credentials to third-party services

● APIs and payment gateways

● Everything that changes depending on the deployment stage

Not following these web development principles may lead to scenarios

where your app works perfectly on the developer's machine and at the QA

stage, but not when it’s deployed to production. Typically, something always

breaks because of the changes made to the configuration in the code.

However, Symfony web development uses the DotEnv library to work with

environment variables. Here’s an example of different environment variables

for development, staging, and production.

SaaS Web Application Development Principles to Be Followed 4

So it doesn’t matter where the web app is deployed because there won’t be

any need to change the code. Only proper environment variables have to be

set. If you’re using Docker, run different Docker containers from the same

image with different environment variables for different deploys.

Principle 4: All the variety of services your web app runs, have

to stay detached

The software community verdict is clear. It doesn’t matter if the application

uses some third-party back-end services, APIs, or built-in components like a

MySQL database. The best practice in this scenario will be to treat them all as

attached resources.

Enable software access via a URL or use any of the other methods stored in

the configuration. This approach will allow the development team to manage

components without making changes to the code.

Symfony development is all about following SOLID principles. For example, to

change database storage from MySQL hosted on EC2 instance to Amazon

RDS, you just need to change the DSN style URL in the environment

configuration without making any changes to the code.

SaaS Web Application Development Principles to Be Followed 5

https://www.docker.com/

You can even change static storage from Amazon S3 to any other Cloud

Storage just by changing the environment variables, without changing the

code.

Some libraries support various types of storage with an implemented

abstraction layer. Flysystem, for example, supports different types of cloud

storage. Doctrine is another example, but it’s abstracted around database

storage. So you can switch from MySQL to PostgreSQL after making minor

changes to the code.

Principle 5: Build, release, and run each software

development stage separately

To ensure stability during all stages of the build, you can leverage

automation tools like Gitlab CI and Jenkins.

Software development pipeline stages:

During the build stage– the code must be set, depending on the PHP

libraries and CSS/JS assets that need to be prepared. Finally, the Docker

container with a version tag has to be built and pushed into the Docker

registry. You’ll also have the option of executing unit tests and code sniffer.

SaaS Web Application Development Principles to Be Followed 6

https://flysystem.thephpleague.com/
https://www.doctrine-project.org/
https://docs.gitlab.com/ee/ci/
https://jenkins.io/

At the release stage– combine the Docker container (produced during the

build stage) with the configuration for the environment (staging, and/or

production) where you will run your build.

At the run stage– execute the app in the selected environment with proper

environment configuration. This will be based on the release stage.

Principle 6: Make processes, stateless, and store the data

outside the Web application

Leading web development practices recommend the storage of persistent

data in separate services. It can be any relational database, for example, like

Redis, Amazon S3, and so on.

However, if you’re working with Docker, you don’t have to store all the data

inside the container. This is because your app has to be stateless.

Going forward, this approach will be critical to scalability. If you need

authorization in your API, you can use stateless JSON Web Tokens, or you can

use sessions, but store them in Redis.

SaaS Web Application Development Principles to Be Followed 7

https://jwt.io/
https://mobidev.biz/services/data-science?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=ds

The Symfony framework can work both ways, and such techniques enable

scalability benefits. For example, you can run one container or hundreds of

containers that use the same code and work with the same services.

You can restart your cluster (or a bunch of containers) or run a new one with

a new version--without data loss.

At some point during the growth cycle, you'll need more than one server. At

this juncture, the software will start running on several servers using a load

balancer.

It's the best approach to orchestrate the execution of functions and various

requests. This is the exact moment when all the processes have to be

stateless.

The users will be authorized on one server, but their requests will be pointed

to another server to be executed. Unless the authorization service is

stateless (and can support both servers), the user won't be able to continue

running the app due to lack of authorization on the second server.

Principle 7: Keep software self-contained and export services

via port binding

All web apps have to be made available without dependencies. If an app uses

several services, each service has to be made available via separate ports.

Once you run Docker Compose on the developer’s local machine, for

example, the application will become available on http://localhost:8085.

At the same time, a separate GUI for Database management services will be

available on http://localhost:8084.

Such an approach allows us to run many Docker containers and use load

balancers (like HAProxy and Amazon Elastic Load Balancing.)

SaaS Web Application Development Principles to Be Followed 8

https://www.adminer.org/
http://www.haproxy.org/
https://aws.amazon.com/elasticloadbalancing/

If the development team refuses to follow this approach, it’ll make the launch

process more complicated. All the unnecessary (extra) steps may create

additional bugs in the system.

Principle 8: Apply the process model with NO sharing

As the web application is developed, there will be a variety of processes

running within the app. However, it’s important to keep all these processes

separate. You can even divide these processes into separate ones if some of

them are getting “too heavy” to manage.

So nothing has to be shared between several different processes. It's the

best way to keep the application simple and stable. What’s great about this

approach to web application architecture is the fact that it makes it easy to

scale.

Below, you’ll find these recommendations illustrated with a PHP

developed multi-tenant application:

● The app can run as many PHP containers as needed to scale (up or

down).

● It can work for as many clients as needed.

● If we need to handle more HTTP requests, we can just add more

running PHP containers.

● If we need to handle more background tasks, we can add more

containers with background workers to handle these needs.

SaaS Web Application Development Principles to Be Followed 9

Principle 9: Stay sustainable with fast launching and shutting

down processes

All web applications have to be developed in a manner that enables scaling

(up or down) at will. It should be able to run 100 containers, for example,

during business hours (when the app users are most active), and run ten

containers at night (to save money allocated for the infrastructure).

This approach can be applied to your software product by containing the

processes, separately. However, you have to enable them to be launched or

terminated rapidly.

That’s why the minimization of the launch time for processes is a must. If you

use Docker, you can run more PHP containers.

The container image should be ready for launch. Don't compile at startup,

and don't run PHP Composer during the launch. The time to launch should

always be as short as possible.

When you want to scale down, all you have to do is shut down some

containers. It’s also critical to shut down the containers without disrupting

the system.

SaaS Web Application Development Principles to Be Followed 10

Users don’t want to see request timeout or error messages. So use proper

termination signals by sending daemons, like in most queue servers.

RabbitMQ and Beanstalkd are great examples that work efficiently in the

background and queue the job in case of failure. You should also apply

transactions to the Relational Database.

Principle 10: Keep development, staging, and production

stages as similar as possible

The development, staging, and production environments have to be as

similar as possible. Following this rule will help web application development

teams avoid situations like a production software failure (which often

happens when the web app was developed under different conditions).

There are some cases where the developer can run an application on a local

machine with Docker and use the same Docker containers for staging and

production. To use something that works only in the cloud, it’s better to go

with the Adapter pattern.

For example, the production Docker cluster uses the same containers that

were tested on staging but with different environment variables. The PHP

and PostgreSQL versions will be the same (and unchanged), but the latter will

run on Amazon RDS.

Log level is different as the users don’t see details about errors like the ones

seen on the developer’s machine or staging server.

Anyway, we will still receive reports about errors (with error details) in our

error log aggregator server. This way, you’ll know about the error before

users report it.

SaaS Web Application Development Principles to Be Followed 11

https://www.rabbitmq.com/
https://beanstalkd.github.io/

Principle 11: Good practice collecting application logsis is to

perceive them as event streams

Software engineers should approach logs as event streams and not a steady

stream of data that are headed for storage. It’s the optimal way to reach

high-visibility while running an application.

Storing logs as separate files for each Docker container (or separate services)

should not be an option for your team.

By default, the Symfony PHP app writes logs on to log files, but you can

configure the logs output to Linux stdout/stderr stream. You can do this by

setting “php://stderr” string in the log path.

After that, you will be able to see all active logs from the console. Anyway,

such an approach will be good for development but not good enough for

production. You can see the logs while your Docker container is running but

not after the container has been terminated.

For production, I would highly recommend the use of log aggregator

services. Sentry, Graylog, Logstash, or Splunk are excellent examples.

SaaS Web Application Development Principles to Be Followed 12

https://sentry.io/welcome/
https://www.graylog.org/
https://www.elastic.co/products/logstash
https://www.splunk.com/
https://mobidev.biz/services/iot-development?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=iot

Such services can aggregate logs from all running containers and enable

analysis from a centralized platform. You can also leverage notifications to be

informed about production issues and avoid losing data logs after a crash.

Principle 12: Manage admin activities as one-off processes

Administration and management activities play an integral part in the

development and deployment of software products.

Database migrations, operations with cache, creating new system users and

backups are just some examples. All these web development principles have

to be applied to those activities as well.

Symfony provides a bin/console command to handle admin/management

tasks. It’s best to run such commands as a one-off process in the same

identical environment as the regular long-running processes of the app. It

means that we need to run a new container for just one task instead of using

an existing container.

Here’s an example of how Symfony accomplishes database migrations in

Docker:

We use Docker run, not Docker execute. This command works with the

container that’s already running. After the migrations are complete, the

Docker container can be exited. This will be a one-off process.

SaaS Web Application Development Principles to Be Followed 13

Achieve web application stability and scalability

All the web application development principles mentioned above should act

as a baseline for your software development team. Such implementations

should also be made wisely and aligned with business priorities.

They should be technically reasonable and seamlessly applicable to specific

use cases. If you choose to ignore one or more of these best practices, there

should be an excellent reason for it.

The key to a successful web development project is to create a culture of CI.

It matters because it's becoming effortless to automate things like

deployments, updates, and setting up infrastructure for new users. Check

our Case study on creating Advisory Web Platform For Education &

Mentoring with CI.

In conclusion, it’s critical to follow these steps and only divert from it when

it’s absolutely necessary. When followed accordingly, these development

principles ensure that your software is stable and ready to scale.

It has paid dividends time and again in my software development career and

promises to do the same for you in your next web development project.

SaaS Web Application Development Principles to Be Followed 14

https://mobidev.biz/blog/education-mentoring-platform-case-study?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=edu-mentoring
https://mobidev.biz/blog/education-mentoring-platform-case-study?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=edu-mentoring
https://mobidev.biz/blog/education-mentoring-platform-case-study?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=edu-mentoring

https://mobidev.biz/?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=2pagelogo
mailto:info@mobidev.biz
https://mobidev.biz/?utm_source=pdf&utm_medium=pdf-symphony&utm_campaign=pdf-symphony

